

Muon tomography Non destructive imaging for societal applications

Rencontres des Jeunes Physicien·ne·s

Christopher Filosa (CEA/DRF/IRFU/DPhN)

DE LA RECHERCHE À L'INDUSTRIE

Looking through objects

And reconstructing their volume

Non destructive imaging

Detector

Slice for this plan

- Good spatial resolution
- High level of contrast

Non destructive imaging

Non destructive imaging

Expectations

- High power of penetration (~100m)
- Harmless
- For high opacity object
- Free

Close encounters of the Third Kind

A permanent cosmic bombing raid

Particle physics rules the world

HIGGS BOSON

A cosmic shower

Known cosmic accelerators : Quasars, Active galaxies, Remanent supernovae, ...

Primaries mainly composed by protons and helium.

A cosmic shower

Muon flux at ground : $150/m^2/s \rightarrow \cos(\Theta)^2$ distribution

Mean Energy ~ 4GeV \implies Kinetic energy of grain of sand at 1m/s

Celerity ~ c

TO

Lifetime ~ $2\mu s$

Natural radiation, free and harmless !

MicroMegas detectors

From fundamental research to social applications

How to detect a particle

Source

Conversion / Detector

Solid (ex: Silicon)

Storage of information

How to detect a particle

Source

Conversion / Detector

Storage of information

MicroMegas detector

MICROMEGAS = **MICRO ME**sh **GA**seous **S**tructure

Gaseous Detector developed at CEA Saclay in 1996 by I. Giomataris, Ph. Rebourgeard et G. Charpak (Nobel prize 1992)

MicroMegas detector

Gain ~ 10⁴-10⁵ Time resolution ~ 10ns Spatial resolution ~ 100µm

Muon Tomography / Muography

Different modes for several applications

DIAPHANE Project (2016)

Two modes of muography

Deviation

Transmission

 $\theta_{x,in}$

- Coulomb diffusion
 - → deflection angle depends on density
 - \rightarrow 10 cm of lead ~ 1° of deflection
- 3D Imaging
- Use for homeland security
- Spatial resolution is drastic
- Faster than transmission

- Muon survival probability depends on the density
 - \rightarrow A density map can be made from the muon flux
 - → Volcanoes
 - → Geological prospection
- Muon flux at ground : 1 muon/cm²/mn
 - \rightarrow Tradeoff between sensitivity and acquisition time
 - Better precision can extract the most information of each muon

Two modes of muography Deviation

Transmission

S.Bouteille (2017, Thesis)

Detection of defaults

Imaging faults in a concrete slab

New mode in Tomomu : absorption

Relative muons excess in transmission = $S_1/S_2 \Rightarrow$ Object with high density (pyramids, volcanoes, buildings) Relative muons excess in absorption = $S_1/(S_1 + S_0) \Rightarrow$ Object with low/intermediate density

Results - Simulations

- H0 : M and N are distributed with the same Poisson distribution with λ.
- H1 : M and N are distributed with differents Poisson distribution (λ and μ)

 $f(M|N,\lambda)$

Imaging faults in a concrete slab

Two positions allowed for the void Symmetry by 180° rotation

1000 mm

- Analysis done between I vs II and I vs III
 - Detectors were moved by 15cm
 - No faults appeared after dividing the two histograms
 - Blurring due to acceptance (geometry and efficiency) and diffusion of muons in the concrete slab

Imaging faults in a concrete slab

Two position allowed for the void
Symmetry by 180° rotation

1000 mm

- Analysis done between I vs II and I vs III
 - Comparison shows a significant difference
 - the fault moved by 15cm as we hoped

Inverse problem

Direct problem

Parameters $\mathbf{p} = (\rho(x) \text{ for } x \text{ in object})$ Data $\mathbf{d} = ((N_{\varphi_1}, N_{T_1}), \dots, (N_{\varphi_d}, N_{T_d}))$

$$\mathcal{M}: \mathcal{P} \longrightarrow \mathcal{D}$$
$$\mathbf{p} \longrightarrow \mathbf{d} = \mathbf{M}.\mathbf{p}$$

Inverse problem

Parameters $\mathbf{p} = (\rho(x) \text{ for } x \text{ in object})$ Data $\mathbf{d} = ((N_{\phi 1}, N_{T1}), \dots, (N_{\phi d}, N_{Td}))$

$$\mathcal{M}: \mathcal{P} \longrightarrow \mathcal{D}$$
$$\mathbf{p} \longrightarrow \mathbf{d} = \mathbf{M}.\mathbf{p}$$

INVERSION

existence, uniqueness and stability

 $\mathcal{N}: \mathcal{D} \to \mathcal{P} \\ \mathbf{d} \to \mathbf{p} = \mathbf{N}.\mathbf{d}$

Resolution by minimisation

 $\mathsf{N}_{\mathsf{\phi}^{\mathsf{i}}}$

 $N_{\sigma i}$ Estimated by Monte-Carlo simulations

Parameters $\mathbf{p} = (\rho_1, \dots, \rho_N)$ Data $\mathbf{d} = ((N_{\varphi_1}, N_{T_1}), \dots, (N_{\varphi_d}, N_{T_d}))$

d_{ij} = path travelled by muons in the voxel j for the LOR i (cm)

 ρ_i = density in the voxel j (g.cm⁻³)

 $O_i = opacity along the LOR i (g.cm⁻²) = \Sigma_i d_{ii} \rho_i$

Inversion = Find $\rho \in \mathbb{R}^{\mathbb{N}}$ such as $\| \mathbf{D} \rho - \mathbf{O} \|^2$ is minimal

Conclusions

• Muography

- → A promising non-invasive technique for imaging and scanning objects of different types and opacities
- \rightarrow Development of robust and stable detectors
- \rightarrow R&D on gas degradation and gas consumption

Reconstruction

- \rightarrow Detection of faults in concrete slab with a new method
- → Work in progress : inverse problem

THANKS

DE LA RECHERCHE À L'INDUSTRIE

