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Looking through 
objects 
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And reconstructing their volume



Non destructive imaging
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● Good spatial resolution
● High level of contrast

Source

X rays
Magnetic field

Slice for this plan

Detector



Non destructive imaging
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● Good spatial resolution
● High level of contrast
● Imaging by tomography

Source

X rays
Magnetic field

Slice for each plan

Source

Detector



Non destructive imaging
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Expectations

● High power of penetration (~100m)
● Harmless  
● For high opacity object
● Free 



Close encounters of 
the Third Kind 
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A permanent cosmic bombing 
raid



Particle physics rules the world  
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A cosmic shower  
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Known cosmic accelerators : Quasars, Active 
galaxies, Remanent supernovae, … Primaries  mainly composed by protons and helium.

@pdg 2017 (Section 30)



A cosmic shower  
che cosmique ! 
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Muon flux at ground : 150/m2/s ➡ cos(θ)2 distribution

Mean Energy ~ 4GeV  ➡ Kinetic energy of grain of sand at 1m/s

Celerity ~ c

Lifetime ~ 2µs

Natural radiation, free and harmless ! 



MicroMegas 
detectors
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From fundamental research to 
social applications



How to detect a particle 
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Source
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Liquid (ex: Scintillator)

Solid (ex: Silicon)

Storage of information



How to detect a particle 
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Source Conversion  / Detector Storage of information



MicroMegas detector
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MICROMEGAS = MICRO MEsh GAseous Structure

Gaseous Detector developed at CEA Saclay in 1996 by I. Giomataris, 
Ph. Rebourgeard et G. Charpak (Nobel prize 1992)



MicroMegas detector
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Ar :95  iC4H10    :2  CF4     :3

CLAS12 
@Jefferson Lab

ATLAS 
@CERN

Quenching

Quenching and 
transverse diffusion

Gain ~ 104-105

Time resolution ~ 10ns
Spatial resolution ~ 100µm



MicroMegas detector
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Main issues : 
Gas leaks and outgassing

Ar:95 C4H10:2 CF4:3

Gas leaks 

Outgassing



Muon Tomography / 
Muography
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Different modes for several 
applications

DIAPHANE Project (2016)



Two modes of muography
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Deviation

Transmission

● Coulomb diffusion
➞ deflection angle depends on density
➞ 10 cm of lead ~ 1° of deflection

● 3D Imaging
● Use for homeland security
● Spatial resolution is drastic
● Faster than transmission

● Muon survival probability depends on the density 
➞ A density map can be made from the muon flux
➞  Volcanoes
➞ Geological prospection

● Muon flux at ground : 1 muon/cm2/mn
➞ Tradeoff between sensitivity and acquisition time
➞ Better precision can extract the most information 

of each muon



Two modes of muography
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Deviation

Transmission

ScanPyramids (2016 2017 (Nature))

S.Bouteille (2017, Thesis)



Detection of 
defaults
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Imaging faults in a concrete slab
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New mode in Tomomu : absorption

Corsika simulation of muon flux at ground . Blue = Eµ < 180 MeV. Red = Eµ > 270 MeV.  

S2

Relative muons excess in transmission = S1 / S2 ➡ Object with high density (pyramids, volcanoes, buildings)
Relative muons excess in absorption = S1 / (S1+ S0 ) ➡ Object with low/intermediate density 

S0

S1
S2
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Results - Simulations

M N

● H0 : M and N are distributed with the same Poisson 
distribution with λ.

● H1 : M and N are distributed with differents Poisson 
distribution (λ and µ)

f(M|N,λ)

Ratio between 
H0 and H1 



Imaging faults in a concrete slab

● Two positions allowed for the void 
➡ Symmetry by 180° rotation

● Analysis done between I vs II and I vs 
III 
➡ Detectors were moved by 15cm
➡ No faults appeared after dividing 

the two histograms
➡ Blurring due to acceptance 

(geometry and efficiency) and 
diffusion of muons in the 
concrete slab 
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Imaging faults in a concrete slab

● Two position allowed for the void 
➡ Symmetry by 180° rotation

● Analysis done between I vs II and I vs 
III 
➡ Comparison shows a significant 

difference 
➡ the fault moved by 15cm as we 

hoped
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CL 99,7%



Inverse problem
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Direct problem
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NTi

Nφi

ρ(x)

Nφj

NTi

M : P → D
                 p → d = M.p

Parameters p = (ρ(x) for x in object)
Data d = ((Nφ1 , NT1), … , (Nφd , NTd))



Inverse problem
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NTi

Nφi

ρ(x)

Nφj

NTi

M : P → D
                 p → d = M.p

Parameters p = (ρ(x) for x in object)
Data d = ((Nφ1 , NT1), … , (Nφd , NTd))

INVERSION

N : D → P
                    d  →   p = N.d

existence, uniqueness  and 
stability



Resolution by minimisation
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Nφi

NTi

Parameters p = (ρ1, … , ρN)
Data d = ((Nφ1 , NT1), … , (Nφd , NTd))

dij

ρj

dij = path travelled by muons in the voxel j for the 
LOR i  (cm)

ρj = density in the voxel j (g.cm-3)

Oi = opacity along the LOR i (g.cm-2) = Σjdij ρj

Oi

Inversion = Find ρ∈RN  such as 
|| D ρ - O ||2 is minimal 

Nφi Estimated by Monte-Carlo simulations 



Conclusions
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● Muography
➞ A promising non-invasive technique for imaging and scanning objects 

of different types and opacities
➞ Development of robust and stable detectors
➞ R&D on gas degradation and gas consumption 

● Reconstruction
➞ Detection of faults in concrete slab with a new method
➞ Work in progress : inverse problem
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