

Improvement of the gravitational wave detector Virgo using squeezed states of light

Gravitational waves

Astronomy : • Radio waves • Infrared • Visible • Ultraviolet • γ rays

Gravitational waves are emitted by moving masses

- Open a new window on the universe
 - Measure directy masses of detected objects
 - Observe black holes
 - Access to the core of violent events: supernova, gamma ray bursts ...
 - Measure the geometry of the Universe with new probes

A gravitational wave generator on earth

source	distance	h
Steel bar, 500 T, $\emptyset = 2$ m L = 20 m, 5 tours/s	1 m	h=10 ⁻³⁴ : a distance of 1 km is stretched by 10 ⁻³¹ m
Bomb H 1 megaton (50x Hirosh.) Asymetry 10%	10 km	h=10 ⁻²⁹ : a distance of 1 km is stretched by 10 ⁻²⁶ m

10 million billion times smaller than the atomic nucleus 10 billion times smaller than the atomic nucleus

→ Not detectable

⇒ Only cataclysmic astrophysical phenomenons can emit detectable gravitational waves

Astrophysical and cosmological sources of gravitational waves

White dwarf 1,4 solar masses 1.10⁹ kg/m³

X 1000 billion

Supernova

Hypothetical states

- Quark star
- Preon star
- Electroweak star
- Etoile à bosons
- Etc.

200

Black hole Biggest known: 66 billion solar masses

More « exotic » sources
Pre-inflation quantum fluctuations
Phase transition in the

primordial universe

- Cosmic strings

5

Astrophysical and cosmological sources of gravitational waves

source	distance	h
Supernova 10 M _o asymetry 10 ⁻⁵	10 kpc	h=10 ⁻²¹ : a distance of 1 km is stretched by 10 ⁻¹⁸ m
Coalescence de 2 trous noirs de 1 M_{\odot}	10 Mpc	h=10 ⁻²⁰ : a distance of 1 km is stretched by 10 ⁻¹⁷ m

« Only » 100 to 1000 times smaller than the atomic nucleus

→ Détectable

Masses initiales :

- Trou Noir 1 : entre 32 et 41 M_{Sol}
- Trou Noir 2 : entre 25 et 33 M_{Sol}
- Masse Finale : entre 58 et 67 M_{Sol}
 Energie Emise : entre 2,5 et 3,5 M_{sol}
- Probabilité que cela soit un faux
 - signal < 1 sur 5 millions

130 million years ago: a fusion of 2 neutron stars

130 million years later...on 17 August 2017 12:41:04 UTC...

Electromagnetic

CMB polarization

How to detect them ?

Weber bars

Polarization of B-modes in the CMB: Looking at the direction of oscillation of the first light emitted 380 000 years after the Big Bang

Measuring the arrival time of a pulsar signal at different periods during the year. For example the signal arrives 20 ns later in july and 20 ns earlier in january

PTA (Pulsar Timing Array)

How to detect them ?

Laser interferometry

Distances have to be measured with a precision equivalent of 10-21

Earth

A distance of 150 million km measured with a precision better than the size of an atom

Interferometric detection

Michelson interferometer

1,064 µm

Path 2 beam

LIGO and Virgo detectors

Control the relative position of the mirrors with a precision better than a

millionth of a micron

Isolate from ground vibrations

Using mirrors which quality is at the limit of current technology

Put the whole interferometer (thousands of m³) under vacuum (P = 10⁻⁹ mbar)

Improving interferometers beyond the standard quantum limit

Beating the standard quantum limit: in theory

Electric field: $E = X_1 \cos(\omega t) + iX_2 \sin(\omega t)$

Amplitude squeezed state

Heisenberg principle: $\Delta X \perp \Delta X \geq 1$

Beating the standard quantum limit: in practice

CALVA: CAvity for the Lock of Advanced Virgo

Backup: Ellipse rotation

$$\alpha_p = \arctan\left(\frac{2\gamma_{\rm fc}\Delta\omega_{\rm fc}}{\gamma_{\rm fc}^2 - \Delta\omega_{\rm fc}^2 + \Omega^2}\right)$$

(1)

 $ω_0$: carrier field frequency $ω_{fc}$: cavity resonance frequency Ω: sideband frequency $Δω_{fc}$: detuning $γ_{fc}$: half-width-half-maximum linewidth

$$\gamma_{fc} = \frac{2.\pi . \Omega_{SQL}}{\sqrt{2}}$$
$$\gamma_{fc} = \frac{\pi . c}{2.L.F}$$

$$\Omega_{\rm SQL_0} \simeq \frac{8}{c} \sqrt{\frac{P_{\rm arm}\omega_0}{mT_{\rm arm}}}$$

Backup: squeezing losses

th

In theory:
$$\gamma_{fc} = \Delta \omega_{fc}$$

In pratice: $\Delta \omega_{fc} = \gamma_{fc} \sqrt{1 - \varepsilon} + \varepsilon_{det}$ Wi

$$\epsilon = \frac{4}{2 + \sqrt{2 + 2\sqrt{1 + \left(\frac{2.\Omega_{SQL}}{f_{FSR}.\Lambda_{rt}^2}\right)^4}}}$$

nd
$$\epsilon_{det} = \omega_0 . \frac{\epsilon_L}{L_{fc}}$$

FD Phase noise with 1 pm locking accuracy

FD Phase noise with 3 pm locking accuracy