







European Research Council Established by the European Commission



Claim

## **Mesoscopic Quantum Electrodynamics** with carbon nanotubes

université



Experiments:

#### Laure Bruhat

T. Cubaynes J.J. Viennot M.C. Dartiailh M.M. Desjardins T. Kontos

Theory:

- A. Cottet
- B. Douçot



Laboratoire pierre aigrain électronique et photonique quantiques



What is mesoscopic QED ?

#### Mesoscopic quantum electrodynamics

=

#### Cavity quantum electrodynamics with mesoscopic circuits

Here : Quantum dot circuits



#### Cavity Quantum ElectroDynamics (QED): from optical systems to superconducting chips



#### Rydberg \_\_\_\_\_ atom



M. Brune et al., PRL 76, 1800 (1996)

#### Circuit QED



A. Wallraff et, Nature 431, 162 (2004)

Coplanar waveguide cavity

Super--conducting qubit













Repulsion between electrons U : Coulomb energy Typical range 1-10 meV





Repulsion between electrons U : Coulomb energy Typical range 1-10 meV

Confinement

**ΔE: level spacing** Typically ~ 1 meV





Repulsion between electrons U : Coulomb energy Typical range 1-10 meV **Confinement ΔE: level spacing** Typically ~ 1 meV

¢ΔE

# lpa

#### Carbon nanotube quantum dot circuits



Repulsion between electrons U: Coulomb energy Typical range 1-10 meV Confinement

**ΔE: level spacing** Typically ~ 1 meV Electron transfer dot-contacts **Γ: tunnelling energy** Typical range μeV-meV





#### 3 characteristic energy scales + thermal energy k<sub>B</sub>T

Room temperature ≈20°C ~ 25 meV

Repulsion between electrons **U** : Coulomb energy Typical range 1-10 meV

Confinement Typically  $\sim 1 \text{ meV}$ 

Electron transfer dot-contacts **ΔE: level spacing C: tunnelling energy** Typical range µeV-meV



#### 3 characteristic energy scales + thermal energy k<sub>B</sub>T

50mK≈4 µeV !

Repulsion between electrons U : Coulomb energy Typical range 1-10 meV

#### Confinement

**ΔE: level spacing** Typically ~ 1 meV Electron transfer dot-contacts **F: tunnelling energy** Typical range µeV-meV







## From single dot to multiple dot circuits

Nanofabrication allows to complexify the circuit geometry.



#### What can we do with these circuits ?

Study **quantum transport** • Involves coupling to **continua of** 

#### states.

• Possible many-body physics



## From single dot to multiple dot circuits

Nanofabrication allows to complexify the circuit geometry.



# lpa

## Interests of mesoscopic QED





# lpa

### Interests of mesoscopic QED



Probe internal quantum states of a mesoscopic circuit ?

See Exp I : S-dot-N in cavity

different way?

Study quantum transport in a

See Exp II : Superconductor-double quantum dot in cavity

### Sample in real life...





## Mesoscopic QED experiments



Cavity-current crossed characterisation: Current I + Microwave transmitted signal

$$\frac{b_t}{b_{in}} = A_0 e^{i\varphi_0}$$

#### Bare cavity resonance :

- Resonance frequency f<sub>0</sub>
- Linewidth related to sensitivity



## Mesoscopic QED experiments



$$\frac{b_t}{b_{in}} = (A_0 + \Delta A) e^{i(\varphi_0 + \Delta \varphi)}$$

Usual measurement : **Amplitude and phase shift occasionned by the circuit at the bare cavity frequency f**<sub>0</sub>

## Exp I: Dot contacted to normal (N) and superconducting (S) reservoirs





• Coulomb diamonds = interacting electrons

No current in gap =
no Cooper pair transport

What does this imply ?

## Dot contacted to normal (N) and superconducting (S) reservoirs



Simplest situation to study tunnelling dynamics !

# Results about AC dynamics of a N/dot junction



Assuming : •large tunnel rate  $\Gamma_N >> \omega$ 

For non-interacting electrons:

| Universality of R <sub>AC</sub>                                       | Experiment                                    | Theory                                               |
|-----------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| R <sub>AC</sub> = h/(N*2e <sup>2</sup> ) with N<br>number of channels | J. Gabelli et al., Science<br>313, 499 (2006) | M. Büttiker et al., Phys.<br>Lett. A 180, 364 (1993) |
| $R_{AC}$ independent of dot energy $\epsilon_{d}$                     | ?                                             | M. Büttiker et al., Phys.<br>Lett. A 180, 364 (1993) |

## Charge relaxation in the interacting case



| Universality of R <sub>AC</sub>                                       | Experiment | Theory                                                      |
|-----------------------------------------------------------------------|------------|-------------------------------------------------------------|
| R <sub>AC</sub> = h/(N*2e <sup>2</sup> ) with N<br>number of channels | ?          | C. Mora and K. Le Hur, Nat. Phys.<br><b>6</b> , 697 (2010). |
| R <sub>AC</sub> independent of dot<br>energy ε <sub>d</sub>           | ?          | C. Mora and K. Le Hur, Nat. Phys.<br><b>6</b> , 697 (2010). |

#### Can we learn something with our setup?

# lpa

### Towards universal charge dissipation



## Charge relaxation in the interacting case



Assuming : •large tunnel rate  $\Gamma_N >> \omega$ 



| Universality of R <sub>AC</sub>                                       | Experiment                    | Theory                                                       |
|-----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|
| R <sub>AC</sub> = h/(N*2e <sup>2</sup> ) with N<br>number of channels | ?                             | M. Filippone, et al., Phys. Rev.<br>Lett. 107, 176601 (2011) |
| R <sub>AC</sub> independent of dot<br>energy ε <sub>d</sub>           | LE. Bruhat et al,<br>PRX 2016 | M. Lee, et al., Phys. Rev. B 83,<br>201304 (2011)            |

#### We put one piece in the big puzzle of science!

# Modelling in terms of charge susceptibility



Good theoretical modelling : first quantitative experimental test of cavity signals modelling in terms of charge susceptibility

opens an avenue because very general method !

#### We developped the tools to put MORE PIECES in the big puzzle of science!

## Exp II: superconductor-double quantum dot





#### NEW!

First time such a circuit was placed in a cavity!

> **Atomic-like device** probed by a cavity

**THE CLASSIC!** 

Most reproduced experiment in mesoscopic QED!



The double dot charge qubit



# Use the cavity as a spectroscopic probe



THE CLASSIC!



Sign change in phase = Resonant condition  $hf = \hbar\Omega$ 



Double dot charge qubit:

 $\Omega(\varepsilon_{\delta})$ 

J.J. Viennot et al., Science 349, 408, (2015)

# Use the cavity as a spectroscopic probe



**NEW!** First time such a shape is observed!



Sign change in phase = Resonant condition  $hf = \hbar\Omega$ 



Superconductor-double quantum dot:

$$Ω(ε_{\delta}, ε$$

Sign of the modification of the spectrum by the superconductor ?

## Charge qubit dressed by the superconductor



Quantitative agreement with S-induced low energy spectrum.

Observed resonance interpreted as the transition between (0,1) and (1,0) states « dressed » by the superconductor (odd eigenstates).

## Last big surprise: Vacuum Rabi splitting!



Largest Vacuum Rabi splitting about 10 MHz ~ 3 line widths

## Observation of strong coupling in mesoscopic QED

#### Simultaneous observed by 3 groups



#### NEW!

- Observed with the first sample!
  Bruhat et al., arXiv 2016 PRB 2018
- Built-in key features to reach the strong coupling regime!

#### THE CLASSIC!

 Achieved in standard double quantum dots after years of effort.

*Mi et al., Science 2017 Stockklauser et al., PRX 2017* 

## Mesoscopic QED is interesting!

#### I. Normal/dot/superconductor circuit in cavity



#### **Open quantum dots :**

Study quantum transport in a different

way

- Kondo resonance MM Desjardins et al Nature 2017
- Majorana fermions

#### II. Superconductor-double quantum dot in cavity



#### **Closed quantum dots:**

Probe/manipulate internal quantum states of a mesoscopic circuit

 Applications in quantum information processing





### Was this all planned?



#### INPUT: YES!

lpa

#### Was this all planned?



#### I wish you many good surprises in your research! Be receptive!

## Stategies to reach the strong coupling regime



## Key ingredient 1: decrease Ec



#### **Key features**

- Double dot with a central superconducting contact
- Fork top gate to resonator

$$E_c = \frac{e^2}{2C_{dot}}$$

For Ec  $\approx$  10 meV,  $\Gamma_2 \approx$  550MHz See JJ Viennot et al, PRB 89, 165404 (2014) Here Ec  $\approx$  1 meV,  $\Gamma_2 \approx$  5MHz

## Key ingredient 2: coupling via interdot hopping

