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Welcome to the zoology of particles m

As a natural science, the particle physics likes to classify (and therefore give funny
names) to its constituents, hence creating a new zoology:
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Which theory to describe this? m

The theoretical background behind the zoology is composed of a few ingredients:

Quantum

Fielo
Theory
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Which theory to describe this? m

The theoretical background behind the zoology is composed of a few ingredients:

Quantum
mechanics

Quantum
Field
Theory
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Which theory to describe this? m

The theoretical background behind the zoology is composed of a few ingredients:

Special

Quantum relativity

mechanics Quantum

Fielo
Theory

Field theory

All that is condensed in a Lagrangian formalism that contains all the kinematic
properties of the particles.
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Which theory to describe this? m

The theoretical background behind the zoology is composed of a few ingredients:

Special

Quantum relativity

mechanics

SYIEIES

Field theory

All that is condensed in a Lagrangian formalism that contains all the kinematic
properties of the particles.

All the interactions arise from the consideration of symmetries. Really all?
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If we believe that all interactions arise from the same mechanism: there is a
moment where they were indistinguishable.

Unifying the interactions

Time

Temperature / Energy

Then how to explain that the weak force mediators (\W/Z bosons) are massive
when the photon is massless”

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018 4



S s BlILGIQVEi
Why do we have masswe medlators’?

R

THEORETICAL CONQUES
50 after 1900

CELTIQVE



ere comes the Higgs m

Inspired by superconductivity physics, two groups of physicists imagined that the
answer could lie under the concept of spontaneous symmetry breaking.
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ere comes the Higgs m

Inspired by superconductivity physics, two groups of physicists imagined that the
answer could lie under the concept of spontaneous symmetry breaking.
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degree of freedom degree of freedom degree of freedom

Orin 2D _ Therefore some particles feel a quadratic
potential (i.e. like a mass term) while other can
"move" freely.

The localised excitation of the field associated
to this potential is the famous Higgs boson.
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ow to look for the Higgs boson m

How to create an Higgs boson

Ki@@% Shey,
gy

0-00-0-0
0-0,-0-0-0

m@@i
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ow to look for the Higgs boson m

How to create an Higgs boson

K%@w@ Shey,
gy
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Gluons

But how to get our ingredients
Fortunately they are all contained inside protons.

\ V'J;‘if-f.._:,_,_%‘;}Sea Quarks
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ow to look for the Higgs boson m

How to create an Higgs boson
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But how to get our ingredients
Fortunately they are all contained inside protons.

But to get them close enough so that they could interact ”

" seaQuarks
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ow to get the proton to interact” m
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- a source of protons

- a way to accelerate them



ow to get the proton to interact” m

C C C' C. sz gii?c:;e of protons
- [ ]
C c e " | - C: - a way to accelerate them

2008 (27 km)

cCGC

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018



ow to get the proton to interact”

R

o aMs
LHC

ALICE LHCb

TT40
SPS T~
T8 7”7

TI2 )

TT10
HiRadMat
2011 [ TT60
|

T2 4 BOOSTER
1972 (157 m)

ATLAS

P

H
LINAC 2 p

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018

We need:
- a source of protons

- a way to accelerate them

- a point where to collide them
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We need:

- a source of protons

- a way to accelerate them
- a point where to collide them

- Something to detect the
outgoing particles

25m

Semiconductor fracker




Why looking for the Higgs boson beauty? m

Higgs bosons have a very, very short life: 10-22 s,
But they love to decay into b quarks :

Branching ratio of Higgs decay

So why not having discovered the Higgs already
with that???
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Why looking for the Higgs boson beauty? m

Higgs bosons have a very, very short life: 10-22 s, Well, in a p-p callision, a lot of b quarks

But they love to decay into b quarks : are also produced by other mechanism.
proton - (anti)proton cross sections
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Ok, but why machine learning”

So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....
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So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....

Example of algorithm:
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Ok, but why machine learning”

So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....

Example of algorithm:

0 s this brown?
Does the event have 2 b quarks”?
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m

Ok, but why machine learning”

So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....

Example of algorithm:

s this brown?
Does the event have 2 b quarks?

s the length <5 cm?
svari < .. ?
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Ok, but why machine learning”

So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....

Example of algorithm:

0 S this brown??
Does the event have 2 b quarks?

© s the length < 5 cm?
svari <.. 7

© s it attracted by a magnet?
s varg > .. 7
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m :

Ok, but why machine learning”

So looking for areedle 2 b quarks coming from a Higgs boson in-ar-haystack a dataset
from the ATLAS detector....

Example of algorithm:

0 S this brown??
Does the event have 2 b quarks?

© s the length < 5 cm?
svari <..?

© s it attracted by a magnet?
s varg > .. 7

Ok but this raise a lot of questions.

Are the variable the most sensitive ones”?

How to define the cuts? m=> | ct the machine deal with that!!!!
What about correlations between variables?

What if some signal can fail a cut?
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Constructing a decision tree m

The goal is to classify an event in 2
‘ categories : Signal / Background.

Simulated samples are used to
construct this decision tree.
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Constructing a decision tree

The goal is to classify an event in 2
‘ categories : Signal / Background.

Simulated samples are used to
construct this decision tree.

Amongst all the variables available,
the algorithm chooses which one
discriminates the best between the
two categories.
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Constructing a decision tree

The goal is to classify an event in 2
categories : Signal / Background.

Var 1 < c1 Var 1> c1 Simulated samples are used to

construct this decision tree.

Amongst all the variables available,
the algorithm chooses which one
discriminates the best between the
two categories.

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciernes 2018 11



R

Constructing a decision tree

The goal is to classify an event in 2
categories : Signal / Background.

Var 1 < c1 Var 1 > c1

Simulated samples are used to
construct this decision tree.

‘ Amongst all the variables available,

the algorithm chooses which one
discriminates the best between the
two categories.
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Constructing a decision tree

Var 1 < c1

Var 1 > c1

R

The goal is to classify an event in 2
categories : Signal / Background.

Simulated samples are used to
construct this decision tree.

Amongst all the variables available,
the algorithm chooses which one
discriminates the best between the
two categories.

Events passing/failing are set to two
leaves and we repeat the operation
to find the optimal cut on the new
optimal variable.
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The goal is to classify an event in 2
categories : Signal / Background.

Simulated samples are used to
construct this decision tree.
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optimal variable.
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The goal is to classify an event in 2
categories : Signal / Background.
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construct this decision tree.
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Constructing a decision tree

Var 1 < c1 Var 1 > c1

Var 3 < c3 Var 3 > c3 Var 2 < c2 Var 2 > c2

Var 1 > c4 Var 1 < c4

R

The goal is to classify an event in 2
categories : Signal / Background.

Simulated samples are used to
construct this decision tree.

Amongst all the variables available,
the algorithm chooses which one
discriminates the best between the
two categories.

Events passing/failing are set to two
leaves and we repeat the operation
to find the optimal cut on the new
optimal variable.
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Constructing a decision tree m

The goal is to classify an event in 2
categories : Signal / Background.

Var 1 < c1 Var 1> c1 Simulated samples are used to

construct this decision tree.

Amongst all the variables available,
Var 3 < ¢3 Var 3 > ¢3 Var 2 < ¢2 var2>c2  the algorithm chooses which one
discriminates the best between the

‘ ‘ ‘ ‘ two categories.

Var1>c4 /. Var1<cé Events passing/failing are set to two
leaves and we repeat the operation

. . ‘ . . ‘ . ‘ to find the optimal cut on the new
optimal variable.
Yy stop the process, we assign

some criteria to stop the tree to
grow.

A purity is then computed depending on the number of Signal/Background events
that are in the final leaf.
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From the two 1-D distributions it is
not clear how to distinguish signal
from background.

The 2-D plot reveals better the
disentanglement.

et the decision tree know how to
separate the two.
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Boosting the Decision Tree

R

are not pure.
Var 1 < ¢t Var 1 > c1

Var 3 < c3 Var 3 > c3 Var 2 < c2 Var 2 > c2

Var1 >c4 Var 1 < c4
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After the classification, some leaves
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After the classification, some leaves
are not pure.
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After the classification, some leaves
are not pure.
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|dea: retraining a new decision tree

but giving more power to the
misclassified events.

Var 3 < ¢3 Var 3 > ¢3 Var 2 < c2 Var2>c2 Then we can combine all the trees by
giving some weights based on the
. ‘ . ‘ misclassification = minor corrections

Var 1>c4 /N Var1<c4 will be added.
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—xample of BDT

The correlation between the two variables

IS clear for a human.

However here boosting the DT can help to

get better classification.
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Background rejection

1

—Xample of

SDT

The correlation between the two variables
Is clear for a human.

However here boosting the DT can help to
get better classification.

However performances are similar for
more than 50 trees — just a waste of CPU.

Background rejection versus Signal efficiency
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Application to H—bb observation

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018

R

15



Application to H—bb observation

ATLAS —-Data
s=13TeV,79.8 1b" B VH, H ~ bb (1=1.16)
1 lepton, 2 jets, 2 b-tags — tl.'inboson
10*E p¥ = 150 GeV [ Single top

Multijet
Il W+jets
Il Z+jets
Uncertainty
----- Pre-fit background
= VH,H — bb x 20

10°

Events /0.13

Machine learning 2l ..
technique 10° 7 -

1.5 E T T T T T T T T T T T T T T T T
1F S5
05 :_V 1l ‘ - ‘ 11| ‘ 11 | ‘ 11| ‘ 11| ‘ - ‘ 11| ‘ 11| ‘ 1l V_:
-1 -08 06-04-02 0 02 04 06 08 1
BDT,, output

Data/Pred.

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018

15



Application to H—bb observation

10_) 105 [T T T I LI I LI I LI I LI I LI I LI I LI I LI I T T I_
o = ATLAS ; \[;Ia'ltaH bb (u=1.16) -
~ r _ -1 ’ - u=t. .
® C (s=13TeV, 79.8 b Diboson ]
% | 1lepton, 2 jets, 2 b-tags f 4
T 10 pY = 150 GeV Single top —
= Multijet =
C Il W+jets ]
@ Q. - Z+jets -
s - Uncertainty
- - 10°E b T 2. e Pre-fit background 3
Machine learning ¢ VR
technigue 1o pun—— - .

. T 17T ‘ LI ‘ L ‘ LI ‘ L ‘ L ‘ LI ‘ L ‘ L ‘ T 1]
g 1.5 g Tg
C\L 1 E‘H—.-‘.—"Hmm‘ . i\\ \_\Q\T »—-ﬁm\\ AN
S o ]
-‘(-6 0_5 ;' L1 ‘ 111 ‘ L1 ‘ 111 ‘ L1 ‘ L1 ‘ 111 ‘ L1 ‘ L1 ‘ L1 ’;
= -1 08 -06-04-02 0 02 04 06 08 1

BDT,, output

- ATLAS —e— Data .
18 - {s=13Tev,79.81b" B VH, H — bb (u=1.06) -
1 6:_ 0+1+2 leptons Diboson

T 2+3jets, 2 b-tags Uncertainty
14 Weighted by Higgs S/B Dijet mass analysis

Cut and count
technigue

|||
W
7

/W
7

|40 60 80 100 120 140 160 180 200
m,, [GeV]

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018

Events / 10 GeV (Weighted, backgr. sub.)
(08)

15



Application to

Machine learning
technigue

Cut and count
technigue

Events / 10 GeV (Weighted, backgr. sub.)

10°

10?

—_
()]
T

- {s=13Tev,79.8 1b" Bl VH, H — bb (1=1.06) ]
1 6:_ 0+1+2 leptons Diboson _:
T 2+3jets, 2 b-tags Uncertainty
14 :_ Weighted by Higgs S/B Dijet mass analysis

NS ANNNNNYY
2 1

E ATLAS —o— Data 3
- VH, H — bb (u=1.16) 3
C \s=13TeV,79.8 b . v (n=1.16) 7
- Diboson -
| 1 lepton, 2 jets, 2 b-tags ® _
L p¥ = 150 GeV Single top —
E Multijet 3
C Il W+jets 7
P e v Il Z+jets i
T Uncertainty
= T Pre-fit background =
= — VH,H —>bb x20 7
H I I I I I I I I I =
Mm\ S 4= %MQ\* \\:\E
:_' L1 ‘ 111 ‘ L1 ‘ 111 ‘ L1 ‘ L1 ‘ 111 ‘ L1 ‘ L1 ‘ L1 ’_:

-1 -08 06-04-02 0 02 04 06 08 1
BDT,,, output

_|||||||||||||||||||||||||||||||||||_
- ATLAS —e— Data ]

IIIIIII I|III|III|III|III|III|I_:
40 60 80 100 120 140 160 180 200

m,, [GeV]

— bbb observation

— statistical significance: 4.9 c observation

Confidence taking

Into account all

possible source of _

errors (experimental, Gain of 27%
statistical,

modelisation...)

— statistical significance: 3.6 o evidence...

Louis D'eramo (LPNHE, Paris) -23/11/2018 - Rencontre Jeunes Physiciennes 2018 15



R

Conclusion

» The Quantum Field Theory is a relative
complete theory involving different physical and
mathematical theories.

» |n order to explain the mass of the weak force
mediators, a spontaneously broken field has to
be involved, and requires a new particle: the
Higgs Boson
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experimental complex but fascinating
guestion.

» Jo solve it, some advanced machine
learning using BDT are used.

» [he observation of Higgs decay into bb
has been claimed by both ATLAS and
CMS collaborations this summer.
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