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Which theory to describe this?

!3

The theoretical background behind the zoology is composed of a few ingredients:

Quantum 

mechanics

Symmetries 

Special 

relativity

Field theory

All that is condensed in a Lagrangian formalism that contains all the kinematic 

properties of the particles.

All the interactions arise from the consideration of symmetries. Really all? 
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Time

Temperature / Energy

Weak

Electromagnetism 
Strong 

Big Bang

If we believe that all interactions arise from the same mechanism: there is a 

moment where they were indistinguishable.

Then how to explain that the weak force mediators (W/Z bosons) are massive 

when the photon is massless?



Electromagnetism

Weak

Strong 

Mass
Why do we have massive mediators?

How to explain fermion mass ?

STANDARD MODEL

THEORETICAL CONQUEST

50 after 1900
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Here comes the Higgs

!6

Inspired by superconductivity physics, two groups of physicists imagined that the 

answer could lie under the concept of spontaneous symmetry breaking.

Therefore some particles feel a quadratic 

potential (i.e. like a mass term) while other can 

"move" freely. 

The localised excitation of the field associated 

to this potential is the famous Higgs boson.

Or in 2D

V
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V

degree of freedom
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degree of freedom
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q q'+

Z

H

W±

+or q q'+ H+q q'+

g g+ H g g+ H + t t+

How to create an Higgs boson

But how to get our ingredients ? 

Fortunately they are all contained inside protons. 

Gluons

But to get them close enough so that they could interact ?

Kinetic energy

Kinetic energy

Kinetic energy

Kinetic energy

Kinetic energy

Kinetic energy

Kinetic energy

Kinetic energy
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How to get the proton to interact?

!8

We need: 
- a source of protons

- a way to accelerate them

- a point where to collide them

- Something to detect the 

outgoing particles 

Measurements to interpret
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So why not having discovered the Higgs already 

with that???
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Well, in a p-p collision, a lot of b quarks 

are also produced by other mechanism.
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Ok, but why machine learning?

!10

So looking for a needle 2 b quarks coming from a Higgs boson in an haystack a dataset 

from the ATLAS detector....

Example of algorithm:

1 Is this brown?

Does the event have 2 b quarks?

2 Is the length < 5 cm?

Is var1 < .. ?

3 Is it attracted by a magnet?

Is var2 > .. ?

Ok but this raise a lot of questions. 
- Are the variable the most sensitive ones? 
- How to define the cuts? 
- What about correlations between variables? 
- What if some signal can fail a cut?

Let the machine deal with that!!!!!
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Constructing a decision tree

!11

The goal is to classify an event in 2 

categories : Signal / Background.

Simulated samples are used to 

construct this decision tree. 
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Var 1 > c1Var 1 < c1

Var 2 > c2Var 2 < c2Var 3 > c3Var 3 < c3

Var 1 < c4Var 1 > c4

The goal is to classify an event in 2 

categories : Signal / Background.

Amongst all the variables available, 

the algorithm chooses which one 

discriminates the best between the 

two categories.

Events passing/failing are set to two 

leaves and we repeat the operation 

to find the optimal cut on the new 

optimal variable.

To stop the process, we assign 

some criteria to stop the tree to 

grow.

purity purity purity purity purity purity purity purity

Simulated samples are used to 

construct this decision tree. 

A purity is then computed depending on the number of Signal/Background events 

that are in the final leaf.
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Example of Decision Tree

!12

From the two 1-D distributions it is 

not clear how to distinguish signal 

from background.

The 2-D plot reveals better the 

disentanglement.

Let the decision tree know how to 

separate the two.
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Boosting the Decision Tree

!13

After the classification, some leaves 

are not pure.
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Example of BDT

!14

The correlation between the two variables 

is clear for a human. 

However here boosting the DT can help to 

get better classification.

DT
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Example of BDT

!14

The correlation between the two variables 

is clear for a human. 

However here boosting the DT can help to 

get better classification.

DT

However performances are similar for 

more than 50 trees → just a waste of CPU.
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Application to H→bb observation

!15
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→ statistical significance: 4.9 σ observation

→ statistical significance: 3.6 σ evidence...

Confidence taking 

into account all 

possible source of 

errors (experimental, 

statistical, 

modelisation...)

Gain of 27%
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Conclusion

!16

➤ The Quantum Field Theory is a relative 

complete theory involving different physical and 

mathematical theories. 
➤ In order to explain the mass of the weak force 

mediators, a spontaneously broken field has to 

be involved, and requires a new particle: the 

Higgs Boson

➤ Its coupling to the b quarks is a rather 

experimental complex but fascinating 

question. 
➤ To solve it, some advanced machine 

learning using BDT are used. 
➤ The observation of Higgs decay into bb 

has been claimed by both ATLAS and 

CMS collaborations this summer. 40 60 80 100 120 140 160 180 200
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