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1. Study the fundamental design principles underlying biological

functions.

2. Use this knowledge to create new materials that are endowed with

properties found only in living organisms.
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Getting inspiration from living systems
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Active matter: Biological systems and non-living systems

Definition : Out of equilibrium systems composed of particles that convert free

energy into mechanical work (self-propelled particles)

Confined single-cell

Tee et al, NCB, 2015

Vibrated granular rods (rice)

Narayan et al, Science 2006

25 mm

Apolar active particle

20 µm

Actin

Nematic order of 

apolar particles
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F actin

Grain of rice
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Increase 

density

Decrease 

density

Liquid Liquid crystal

Increase of density induces an Isotropic/Nematic transition in

lyotropic liquid crystals

• High orientational order as in crystalline solids

• Low positional order as in liquids

Nematic Liquid crystals have:



Elongated apolar migrating cell

Elongated cells migrate as an apolar active particle

n=-n
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250 µm

Elongated cells 2D Orientation

Duclos et al., Soft Matter 2014



Low density

Low order

High density 

High order

Disorder to order transition controlled by cell density

250 µm

Increasing 

density
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250 µm

Elongated cells 2D Orientation



Two types of topological defects in the nematic cellular tissue

200 µm
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Actin

Tubulin

Duclos et al., Nat Phys 2017



Topological confinement of active cellular nematics

Stot = +1 Stot = 0
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200 µm 200 µm
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Duclos et al., Nat Phys 2017 Duclos et al., Nat Phys 2018Duclos et al., Soft Matter 2014

Topological confinement of active cellular nematics



Topological confinement of active cellular nematics

200 µm

Stot = -1

Stot = +1
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Postdoc: Biomimetique active gel

+

-

Microtubules Molecular motors

3D active nematicsActive nematic Liquid crystals in biological materials

Liquid crystal



Shear flows align the microtubules in a well defined initial state

Instability in flow aligned active gelsActive nematic Liquid crystals in biological materials

active materialglass

Width: 3 mm

Height: 100 μm

Flow aligned 

microtubules 



Activity-driven Bend instabilityActivity-driven Bend instability



Activity-driven bend instability

Instability in flow aligned active gelsActive nematic Liquid crystals in biological materials

The wavelength of the instability � depends on:

• Nematic elasticity K • Activity α

Nematic elasticity >> Activity Activity >> Nematic elasticity  

� ∝ ��



DeCamp et al, 2015

2D active nematic



3D active nematicsActive nematic Liquid crystals in biological materials

Topological defects form loops in 3D

OrientationDefect lineDefect lines

50 μm

In 2D :
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Conclusion: Active nematics in biological materials

Living cells Active polymers
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Perspective: Use activity to control the morphogenesis of biomimetic elastomer
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Bershadsky lab, National University of Singapore

Cytoskeleton filaments: bio-polymers driven out of 

equilibrium by molecular motors

Actin filaments

Cell nucleus

Molecular motorPolymer network

Kinesin-1 motors
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-1/2 +1/2
Oleg D. Lavrentovich, Liquid Crystal Institute, Kent State 

University 

Topological defects in nematic Liquid crystals
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Topological defects in nematic Liquid crystals

Topological charge     Q = 
ଵଶ� ׯ ���� ݏ�



Bend instability
suplement



Fluorescent MT, polar ends labeled in blue and red

+-

+-

-+

+-

Sanchez et al, 2012
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Kinesin clusters induce the sliding of anti-parallel microtubules



Low MT concentration on a 2D oil-water interface

DeCamp et al, 2015



Fluorescently labelled Microtubules in a 3D flow channel



Instability in ͞Living LiƋuid Cƌystals͟
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Zhou et al., 

PNAS 2013
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Theoretical approach: Bend instability is a 2D active extensile nematic

� ∝ �� K nematic elasticity (Frank constant)

α activity

Thampi et al., Instability and topological defects in active nematics, Europhysics Letter 2013

Continuum model of an extensile active nematic



t=30min t= 12h

No ATP and no Motor complexes

200um

The instability is an active process
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Microtubules Velocity field

Dynamics of the instability

Mapping of the displacement field using Particle Image Velocimetry (PIV)

Vorticity
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Dynamics of the instability



5 mm
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Macroscopic instability



Puller

Pusher

Unstable

Unstable

Stable

Stable

a) Extensile

b) Contractile

Bend Splay

Instability in extensile vs. contractile active nematics



Velocity along the Y axis

X axis = channel axis
Y axis
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Fluorescent MT S - Order Param Orientation n Curl (  S.n )
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Curl ( Q )Velocity along Y axis

500 um
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� ∝ ∇ × �



Wavelength vs. Kinesin-Streptavidin concentration

Active effect or viscoelastic effect ?

K401, is a double-headed processive motor

Processive: go through repeated complete 

enzymatic cycles while remaining bound to 

the microtubule (~100 cycles)



Wavelength vs. Kinesin-Streptavidin concentration

K365 is a single-headed non 

processive motor



Wavelength vs. Kinesin-Streptavidin concentration 

(single-headed K365)



[Tubulin]=1.3mg/mL, [KSA]=121nM, [Pluronic]=2%

500um 500um

[ATP] = 1420uM[ATP] = 100uM

Wavelength vs. ATP concentration



Wavelength vs. ATP concentration

[Tubulin]=1.3mg/mL, [KSA]=121nM, [Pluronic]=2%



Low ATP concentration (10uM)

200um



Low ATP concentration (10uM)

100um 100um



W=100um

H=50um

[Tubulin]=1.3mg/mL, 

[KSA]<20nM, 

[ATP]=1420uM, 

[Pluronic]=2%
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[Tubulin]=1.3mg/mL, [KSA]=20nM, 

[ATP]=1420uM, [Pluronic]=2%

W=150um

H=50um

W=75um

H=50um
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Effect of confinement on the instability



Effect of confinement: Wavelength vs. channel width

[Tubulin]=1.3mg/mL, [KSA]=20nM, [ATP]=1420uM, [Pluronic]=2%, height=50um

L=125um

L=250um

L=500um

250um
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H=40um

H=46um

H=59um

250um

Effect of confinement: Wavelength vs. channel height
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[Tubulin]=1.3mg/mL, [KSA]=20nM, [ATP]=1420uM, [Pluronic]=2%, height=50um



Active 3D active LC
suplement



Are the MT still actively sliding in the stable phase ?

100um

[ - ] ATP [+] ATP
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<L> ~ 2 um

Lp ~ 2 mm

Salmonella Bacteria Flagella
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Dark-fieldEM Fluorescent



Increase [Flagella]

0mg/mL 10mg/mL 15mg/mL

1.3

mg/mL

2.2

mg/mL

Increase [MT]

Stability depends on the ratio of MT to flagella

Stable

Unstable



R=25um
R=10um

Lopez-Leon and Fernandez-Nieves (2011)

Confinement below the critical radius



Effect of an external magnetic field
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50um

3D Samples: 3D confocal microscopy
FOV (X,Y,Z): 150*150*100um
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Krzic et al., Nat. Methods (2012)

200um

Multi-view light-sheet microscopy (S. Streichan, UCSB)



Topological defects form loops in 3D

3D active nematicsActive nematic Liquid crystals in biological materials



Active cellular nematic
suplement
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MT Actin filaments Molecular motors DNA, ŵeŵďraŶes…

Schliwa and Woehlke, Nature 2003
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500 um 125 um 50 um

Actin cytoskeleton at different magnification

10X 40X 100X



68

Coarse-grained orientation field on a fibroblast monolayer
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Duclos et al., Soft Matter 2014

Nematic order increases over time



Cell density increase drives an increase in nematic order

Inhibition of cell proliferation
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500 µm

Defect density decreases with time

No defect creation !



Pairwise defects annihilation: topological attraction

d ∝ ݐ

100 µm
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Contractile 

active nematics

200 µm

Self-propulsion of +1/2 topological defects 
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Topological confinement of active cellular nematics

200 µm 200 µm
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Topological confinement of active cellular nematics

Stot = +1 Stot = 0
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Topological confinement of active cellular nematics

200 µm

Stot = -1

Stot = +1

Duclos et al., Nat Phys 2017
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Splay corner Bend corner

Confinement in squares
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Dammone et al, PRL, 2012

200 µm
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Confinement in disks (micropatterning)

Non-adhesive Adhesive

+1 defect instable

Two +1/2 defects

Total charge = +1

R = 250 µm – 400 µm
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200 µm
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N=357

Topological confinement of active cellular nematics

Duclos et al., Nat Phys 2017



Independant of:

• Cell contractility

• Cell type

Topological confinement of active cellular nematics

r0*, the defeĐts’ radial positioŶ sĐales with R, the disk radius
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Experimental data

Model

Theoretical model (Christoph Erlenkaemper, Jean-François Joanny) 

Hypothesis: 

Parallel alignment at the edges 

K1=K3=K

No active stress

2 degrees of freedom

R and Φ
(Defect position uncorrelated)
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Nematic drop model

Frank-Oseen free energy

r0
* = 5-1/4 ≈  0,ϲϳ*R 

2D Energy map (polar) 1D Energy map (Φ=π)
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r0*, the defeĐts’ radial positioŶ sĐales with R, the disk radius

Independant of:

• Activity

• Nematic elasticity K 

αtheory= 5-1/4 ≈  0.ϲϳ
αexp= 0.67 ± 0.02 
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Duclos et al., in review

200um

Topological confinement of active cellular nematics ( L > 50 um )
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Topological confinement of active cellular nematics ( L > 50 um )

200um Orientation: tilt above Lc Dynamics: Shear flows above Lc


