Playing with a photon

VALENTIN MÉTILLON

Laboratoire Kastler-Brossel, Institut de physique du Collège de France, groupe électrodynamique quantique en cavité

・ロト ・四ト ・ヨト ・ヨト 三田

Matter is made of atoms (image : Wikipedia)

・ロト ・回ト ・ヨト ・ヨト

э.

Matter is made of atoms (image : Wikipedia)

Light is made of photons (image : CNRS)

э

How to keep light for a while

Prepare and probe a delocalized state of one photon stored in two cavities :

$$rac{1}{\sqrt{2}}\left(\left| 10
ight
angle + \left| 01
ight
angle
ight).$$

イロト イポト イヨト イヨト

= 990

Designing highly reflective mirrors

- Microwave frequency : ν(TEM₉₀₀) = 51.099 GHz
- Long lifetime $T_{cav} =$ some tens of milliseconds !
- Small mode volume $V \simeq 700 \text{ mm}^3$

•
$$\mathcal{E}_0 = \sqrt{\frac{\hbar\omega_c}{2\varepsilon_0 V}} \simeq 1.5 \text{ mV/m}$$

Boxes to trap light

<ロ> <同> <同> < 回> < 回>

Circular Rydberg atoms

$$|e\rangle \equiv |51c\rangle \frac{1}{\nu} = 51.099 \text{ GHz}$$

- ⁸⁵Rb
- Rydberg atoms : large principal quantum number $n \simeq 50$
- Circular Rydberg : maximal angular momentum : l = |m| = n 1
- Long lifetime $T_{\rm at} \simeq 30 \ {\rm ms}$
- Microwave transitions
- Large dipole : $d=1776|q|a_0$ for |50c
 angle
 ightarrow|51c
 angle

(日) (同) (三) (三)

э

Preparing atomic samples

- Paquets with typically 0.1 atoms
- Velocity 250 m/s
- Interaction with cavity controled by V
- Ionization detector D : detects $|e\rangle$ or $|g\rangle$

3 x 3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

State superposition

Goal : we want to understand a notation such as $|\pm_x\rangle = (|e\rangle \pm |g\rangle)/\sqrt{2}$. Note that :

$$P_e = \langle e|+_x \rangle = rac{1}{2},$$

 $P_g = \langle g|+_x \rangle = rac{1}{2}.$

But if we change the measurement basis :

$$P_{+} = \langle +_{x} | +_{x} \rangle = 1,$$

$$P_{-} = \langle -_{x} | +_{x} \rangle = 0.$$

What does it mean to change the measurement basis?

(日) (同) (三) (三)

The Bloch sphere

VALENTIN MÉTILLON Playing with a photon

<ロ> <同> <同> < 回> < 回>

The Bloch sphere

<ロ> <同> <同> < 回> < 回>

The Bloch sphere

Most general state (up to a global phase) :

$$|\psi\rangle = \cos\theta \,|e\rangle + \sin\theta e^{i\varphi} \,|g\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta e^{i\varphi} \end{pmatrix}.$$

・ロト ・日下・ ・日下

-∢ ⊒ →

э

Atom-cavity interaction : The Jaynes-Cummings Hamiltonian

$$\hat{H}_{\rm JC} = \frac{\hbar\omega_{\rm at}}{2}\hat{\sigma}_z + \hbar\omega_c \left(\hat{N} + \frac{1}{2}\right) + \frac{\hbar\Omega_0}{2} \left(\hat{a}\hat{\sigma}_+ + \hat{a}^{\dagger}\hat{\sigma}_-\right)$$
$$\Omega_0 = \frac{2d\mathcal{E}_0\vec{\epsilon}_a^*\cdot\vec{\epsilon}_c}{\hbar} \simeq 2\pi\cdot 50 \text{ kHz} >> T_{\rm at}^{-1}, T_{\rm cav}^{-1}$$

Interaction of one atom with one photon : Rabi oscillations

- *Ĥ*_{jc} commutes with the number of excitations and can be separated in terms *Ĥ_n* with *n* excitations.
- For an atom initially in $|e\rangle$ with no photon, one can restrict to the subspace of states $\{|e, 0\rangle, |g, 1\rangle\}.$

Interaction of one atom with one photon : Rabi oscillations

- *Ĥ*_{jc} commutes with the number of excitations and can be separated in terms *Ĥ_n* with n excitations.
- For an atom initially in $|e\rangle$ with no photon, one can restrict to the subspace of states $\{|e, 0\rangle, |g, 1\rangle\}.$

< 6 >

Interaction of one atom with one photon : Rabi oscillations

- *Ĥ*_{jc} commutes with the number of excitations and can be separated in terms *Ĥ_n* with n excitations.
- For an atom initially in |e> with no photon, one can restrict to the subspace of states

< A > < > >

Preparation of an entangled state

・ロン ・回と ・ヨン ・ ヨン

Ξ.

Preparation of an entangled state

<ロ> <同> <同> < 回> < 回>

Preparation of an entangled state

(日) (同) (三) (三)

Preparation of an entangled state

(日) (同) (三) (三)

Preparation of an entangled state

(日) (同) (三) (三)

Reading of the entangled state

・ロン ・四 と ・ ヨ と ・ ヨ と …

Reading of the entangled state

・ロン ・回と ・ヨン ・ ヨン

Reading of the entangled state

<ロ> <同> <同> < 回> < 回>

The role of the quantum phase

・ロン ・四 と ・ ヨ と ・ ヨ と …

The role of the quantum phase

イロン イボン イヨン イヨン

To absorb or not to absorb

Interferometric signal

- $\bullet\,$ Signature of the non-local coherence between $|10\rangle$ and $|01\rangle$
- Signal reveals the frequency difference between the two cavities

(日) (同) (三) (三)

э

Reconstructed density matrix

- Preparation and probe of a state |10
 angle+|01
 angle, with tomography;
- The non-local coherences play a major role in the sensitivity of the state;
- The photon is sensitive to the frequency beat of the cavities : it's in both of them at the same time !

Э.

イロン イボン イヨン イヨン

- Preparation and probe of a state |10
 angle+|01
 angle, with tomography;
- The non-local coherences play a major role in the sensitivity of the state;
- The photon is sensitive to the frequency beat of the cavities : it's in both of them at the same time !
- Perpective : Preparation of $|20\rangle+|02\rangle$

(日) (同) (三) (三)

Thank you for your attention !

・ロン ・四 と ・ ヨ と ・ ヨ と …

= 990

The density matrix in a nutshell

$$\begin{split} |e\rangle &\to |e\rangle \langle e| = \begin{pmatrix} 1\\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} e & g\\ 1 & 0\\ 0 & 0 \end{pmatrix} \\ |+\rangle &\to |+\rangle \langle +| = \frac{1}{2} \begin{pmatrix} 1\\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix} \\ |\psi_{\varphi}\rangle &\equiv (|e\rangle + e^{i\varphi} |g\rangle)/\sqrt{2} \to \frac{1}{2} \begin{pmatrix} 1 & e^{-i\varphi}\\ e^{i\varphi} & 1 \end{pmatrix} \end{split}$$

Moere generally, every matrix that fullfills :

$$egin{aligned} & \end{aligned} \Gamma r(\hat{
ho}) &= 1, \ & \hat{
ho}^\dagger &= \hat{
ho}, \ & \hat{
ho} &> 0, \end{aligned}$$

٦

is a density matrix.

Diagonalizing some density matrices

Diagonalization of
$$\hat{\rho}_{\varphi} \equiv |\psi_{\varphi}\rangle \langle \psi_{\varphi}| = \frac{1}{2} \begin{pmatrix} 1 & e^{-i\varphi} \\ e^{i\varphi} & 1 \end{pmatrix}$$
:
 $\hat{\rho}_{\varphi} |\psi_{\varphi}\rangle = |\psi_{\varphi}\rangle \langle \psi_{\varphi}|\psi_{\varphi}\rangle = |\psi_{\varphi}\rangle,$
 $\hat{\rho}_{\varphi} |\psi_{-\varphi}\rangle = |\psi_{\varphi}\rangle \langle \psi_{\varphi}|\psi_{-\varphi}\rangle = 0.$

Hence,

$$\begin{split} \psi_{\varphi} & \psi_{-\varphi} \\ \hat{\rho}_{\varphi} &= \hat{P} \ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \hat{P}^{\dagger}. \end{split}$$
Diagonalization of $\tilde{\hat{\rho}}_{\varphi} \equiv \frac{1}{2} \begin{pmatrix} 1 & ce^{-i\varphi} \\ ce^{i\varphi} & 1 \end{pmatrix} = \frac{1+c}{2} \hat{\rho}_{\varphi} + \frac{1-c}{2} \hat{\rho}_{-\varphi}, \text{ where } (c \in [-1,1]): \end{split}$

$$ilde{
ho}_{arphi} = \hat{P} egin{pmatrix} rac{1+c}{2} & 0 \ 0 & rac{1-c}{2} \end{pmatrix} \hat{P}^{\dagger}.$$

・ロト ・回ト ・ヨト ・ヨト

э.

• Born's rule :

$$p(m) = \left| \langle m | \psi
angle
ight|^2 o p(m) = \langle m | \, \hat{
ho} \, | m
angle$$

• Average :

$$\langle A
angle = {
m Tr}(\hat{
ho}\hat{A})$$

• Simple expression for $\hat{\rho}$:

$$\hat{\rho} = \frac{1}{2} \left(\mathbbm{1} + \vec{r} \cdot \hat{\vec{\sigma}} \right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 ̄